
DOI 10.1007/s10665-005-9007-0
Journal of Engineering Mathematics (2006) 54: 119–143 © Springer 2005

A mathematical model for the use of a Gough-Stewart platform
mechanism as a fixator
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Abstract. One of the spatial external fixators, which can provide six degrees of freedom, three rotations and three
translations, in handling extremity fractures and deformity-correction cases, is the so-called Gough-Stewart Plat-
form Mechanism with six adjustable bars and two platforms. A mathematical model is developed for an effective
deployment of the apparatus in orthopaedic processes. The model basically accepts input radiographic and clini-
cal data and provides the bar lengths under several conditions and possibilities systematically studied, on the one
hand, and predicts the behavior of the fixator assembly as to the guiding of the bone fragments in a controlled
fashion determined by the treatment strategy, on the other. Numerical examples are presented to verify the model.
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1. Introduction

In orthopaedic clinical practice, treatment of complex bone deformities and reduction of old,
unreduced fractures are always problematic. Currently, circular fixators are used mainly to
solve these problems because of their capability of six-degrees-of-freedom bone displacement,
[1, pp. 287–543], [2, Chapter 12]. Gradual movement of the bone fragments not only provides
safe correction but also promotes bone healing by distraction osteogenesis. In acute fractures,
if the surgeon prefers to use a circular fixator, it is usually difficult to hold the reduction
during the application of the frame, so some residual displacement occurs. Hinges, transla-
tion and rotation devices and rods are used for bone displacement. Very careful pre-operative
planning and precise application of the hinges are required for a successful clinical outcome
[1, pp. 287–543], [2, Chapter 12]. Some small errors can cause major displacements of bone
fragments, which is unacceptable clinically. Especially, treatment of rotational deformities are
difficult because of bone translation during derotation maneuvers. Frequent revisions of the
hinges are required in the course of treatment.

For an orthopaedic surgeon, without complex pre-oprative planning, application of a
frame depending on clinical soft tissue and bone conditions, and to deal with residual dis-
placements and deformity later would be simple. The main purpose of this study is to try to
realize this concept.

Realization of the concept requires the effective application of spatial external fixators pro-
viding controlled motion capabilities with six degrees of freedom in 3-D space. This work
aims to propose a mathematical model for an effective deployment of a Gough-Stewart Plat-
form (G-S) Mechanism as a spatial external fixator.
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2. Theory

It is by now a well-established fact that spatial fixators are used in medical practice, not only
in the area of fracture treatment, but also towards the correction of bone deformities [3].
However, the quality of this service can only be improved by casting light on the biomechani-
cal foundations of this practice. Thus, departing from such a point of view, we will show here
how, by using a spatial fixator, the fractured bone fragments can be brought to their previ-
ously healthy positions before fracture or how movements of the ends resulting from cutting
off the deformed bones can be controlled in a desirable way.

One of the very effective spatial fixators which might suitably be employed for the afore-
mentioned orthopaedic purposes is the so-called G-S Platform Mechanism. First introduced
as a universal tire-test machine by Gough [4] and later as a flight simulator by Stewart [5], a
G-S platform has several modes of existence. An appropriate model of a G-S Platform Mech-
anism to be considered here consists of two platforms, one moving, the other fixed, whereby
the fixed platform, called base, is connected to the moving platform by six bars through six
double spherical joints. Such a robotic structure provides six degrees of freedom, three trans-
lational and three rotational in space. Thus, by changing the lengths of the bars, the relative
position of the moving platform can be determined with respect to the base. The problem in
which relative positions of the platforms can be estimated against given bar lengths is known
as the direct (or forward) kinematics problem. The direct kinematics of G-S Platform Mech-
anisms have been worked out by many authors; see [6–11]. The inverse kinematic problem,
in which bar lengths are computed for desired positions, has found interesting applications in
different areas; see e.g., [12, 13].

As a fixator, a G-S Platform Mechanism is applied in such a way that the base platform is
connected rigidly to the proximal fragment, while the moving platform is located on the dis-
tal fragment. The circles circumscribing the base triangle (A1A2A3) and the movable platform
triangle (B1B2B3) will be referred to as proximal and distal rings, respectively, both in concept
and in the physical arrangement as shown in Figure 1(a). When the proximal and distal ring
planes are parallel to each other, this is to be understood as the neutral configuration.

It is possible that the orthopaedist may join the fragments at the fracture site with the
rings of the fixator in several different ways. In a first case, it is assumed that the bone frag-
ments are fixed to the ring planes, so that the bone axes and plane normals are parallel. It
may be thought, in a second case, that the bone axis is connected perpendicular to the ring
plane in the proximal part of the fracture site, while the distal fragment is located arbitrarily
on the relevant ring of the fixator. As a most general third case, it is probable that, both on
the proximal and distal sides of the fixator, the fragment axes may have arbitrary configura-
tions in relation to the ring planes. Furthermore, it is realistic to assume in all cases that the
bone and ring centers are not coincident.

In dealing with the different cases, we will perform an inverse kinematic analysis on the
G-S Platform model fixator. Input to that analysis will come from radiographic data as well
as from clinical examination results. The analysis will provide the leg lengths (L1–L6) of the
Stewart Platform Mechanism. As radiographic data, lateral and anteroposterior (AP) views
projected along the x- and y-axes are needed, as shown in Figure 1(a). An axial view, when
clinically performed, will yield further data for the analysis. The mentioned xyz co-ordinate
system is located at the center of the proximal ring, G (Figure 1(a)), so that the xy-plane
formed by the A1, A2, A3 spherical joints is coincident with the base of the G-S Platform
and the x-axis passes through the center of spherical joint A1. The spherical joints B1, B2, B3

seen in Figure 1(a) belong to the moving platform fixed to the distal fragment. The center of
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Figure 1. (a) General fixator assembly in neutral configuration (b) Measured parameters of fixator on lateral plane
(c) Measured parameters of fixator on AP plane (d) Measured parameters of fixator on axial plane.

the distal ring G1 will also be the origin of a movable uvw co-ordinate system attached to the
moving platform, whereby the uv-plane is defined by the distal ring and the u-axis is defined
by G1B1; see Figure 1(a).

Based on the above assumptions and notation, a detailed analyses of the three cases will
be presented. See Appendix D for a list of symbols.

2.1. First case

We consider the situation as shown in Figure 2. Both bone fragments are perpendicular to
the respective circles.
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Figure 2. Case 1 of fixator assembly.

First, it is necessary to recognize the parameters which characterize the initial and final
configurations of the Stewart Platform, one of them being the neutral configuration. The val-
ues of these parameters are to be taken from measurements on the lateral, AP, radiographs
and on the axial clinical examinations; see Figure 1(b–d). Parameter h designates the distance
between the proximal and distal ring planes along the z-direction, when the fixator is at its
neutral configuration; see Figure 1(b). Parameters qx, qy signify the distances between the cen-
ters G of the proximal ring and G′ of the proximal fragment along the x,y-directions in the
proximal ring plane, respectively; see Figure 1(d). Similarly, rx, ry, rz are the corresponding
distances, measured along the x,y,z axes, respectively, of the G′′

1 distal bone axis from the dis-
tal ring center G1 in the distal ring plane, in the fixed Gxyz-system; see Figure 1(d). Both
axial clinical examination, as well as lateral and AP radiographs, are used to get data rele-
vant to qx, qy, rx, ry, rz for subsequent evaluation. The distances ex, ey, ez are the quantities
representing relative translations of the fragment bone ends along the x,y,z, axes, respectively,
which are necessarily measured from lateral and AP radiographs, as shown in Figure 1(b),
(c). The projected lengths bL, cL of the proximal and distal fragments on the lateral plane
are shown in Figure 1(b). The angles βL, βAP are measured between the vertical z-axis and
the projected axis of the distal fragment on the lateral (L) and on the AP planes, respec-
tively, as shown in Figure 1(b), (c). Similar angle definitions apply for the parameters β ′

L,β ′
AP ,

this time for the proximal bone, as shown in Figure 1(b), (c). These angles can be easily
determined from the AP and lateral radiographs. The projected relative angular displacement
δAx of the distal fragment with respect to the proximal fragment in the axial view is seen in
Figure 1(d). Determination of δAx makes it necessary to refer to clinical examination. Finally,
parameter δ0 designates the relative rotation of the distal ring with respect to the proximal
ring, as shown in Figure 1(d). This angle can be pre-determined from the initial mounting
configuration of the fixator as applied to the fracture site.
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Given the above data and the accompanying assumptions, it will now be possible for us to
express the unit vectors eu, ev, ew of the moving co-ordinate system G1uvw attached to the
distal ring at G1 according to the following calculations (see Appendix A).

tan βAx = tan βAP

tan βL

, (1)

tan βwz = tan βAP

sin βAx

, (2)

tan βwy =
√

1+ tan2 βwz sin2 βAx

tan βwz cosβAx

, (3)

tan βwx =
√

1+ tan2 βwz cos2 βAx

tan βwz sin βAx

. (4)

Computed βwx , βwy , βwz parameters define the angles between the w-axis of the moving
G1uvw and the fixed x, y, z axes of the base Gxyz co-ordinate systems, respectively. If the
unit vectors of the Gxyz system are designated by i, j, k, then unit vector ew is defined as
follows:

ew = i cosβwx + j cosβwy +k cosβwz. (5)

Next, assuming that G1uvw-system is obtained by rotating the Gxyz system about the
x, y, z axes, by γ, η,α angles in that order (i.e., first γ -rotation about x-axis, second η-rota-
tion about y-axis and third α-rotation about z-axis), the rotation matrix, [14, Chapter 2], [15,
Chapter 2], we can form rot[γ, η,α] out of unit vector components in the following way:

[AG1uvw
Gxyz ]=∗ rot[γ, η,α]=∗ [eu ev ew]=∗




eux evx ewx

euy evy ewy

euz evz ewz


 . (6)

Here the entries eux, euy, euz, evx, evy, evz, ewx, ewy, ewz of the matrix are the components of the
unit vectors eu, ev, ew along the fixed x, y, z axes. The matrix A

G1uvw
Gxyz can also be viewed as

a transformation matrix mapping distal-ring-attached points into the base-attached reference
frame, except for translation. If the rotation matrix is rewritten in terms of the angles γ, η,α,
then [14, Chapter 2]:

[AG1uvw
Gxyz ]=




cosα cosη cosα sin η sin γ − sin α cosγ cosα sin η cosγ + sin α sin γ

sin α cosη sin α sin η sin γ + cosα cosγ sin α sin η cosγ − cosα sin γ

− sin η cosη sin γ cosη cosγ


 .

(7)

Knowing the components of ew along the normal of the distal ring plane from (5), we
can make use of the last column of the transformation matrix in (7) in the calculation of the
unit vectors eu and ev. To this end, inserting (δ0 − δAx) as α in (7) and solving the equations
resulting from comparison of (7) with (6) for the unknown angles we obtain the following:

tan η= ewx cos(δ0 − δAx)+ ewy sin(δ0 − δAx)

ewz

, (8)

cosγ = ewz

cosη
. (9)

The relationships (8), (9) now define the unit vectors eu, ev, ew.
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From the given set (bL, cL), one can calculate the fragment lengths on the proximal (b)
and distal sides (c) of the fracture point. Since fragments are assumed to be perpendicular to
their relevant planes of attachment in the first case, Figure 2(a), on the base part it is appar-
ent that bL =b, whereas on the moving part, c will be estimated by the following:

c= cL√
cos2 βwz + cos2 βAx sin2 βwz

. (10)

With reference to Figure 2(a), G′
1 is the fracture point on the distal fragment to be unified

with its counterpart K on the proximal fragment. Accordingly, the following vector relation-
ships can be written down in the fixed Gxyz-system:

GG1 =GK +KG′
1 +G′

1G′′
1 −G1G′′

1 (11)

with

GK =qx i +qy j+bk, (12)

KG′
1 = ex i + ey j+ ezk, (13)

G1G′′
1 = rx i + ry j+ rzk, (14)

G′
1G′′

1 = cew = c(ewx i + ewy j+ ewzk). (15)

Furthermore:

GB1 =GG1 +G1B1, (16)

GB2 =GG1 +G1B2, (17)

GB3 =GG1 +G1B3. (18)

Now, in order to calculate G1B1, G1B2, G1B3, one can imagine a triangle B1B2B3 with
sides b1=B2B3, b2=B3B1, b3=B1B2 and describe the vectors in the moving G1uvw-system:

G1B1 =R1eu, (19)

G1B2 =−R1 cos 2δ1eu +R1 sin 2δ1ev, (20)

G1B3 =−R1 cos 2δ3eu −R1 sin 2δ3ev, (21)

where: (see Appendix B)

δ1 = ϕ1 +ϕ2 −ϕ3

2
; δ3 = ϕ3 +ϕ1 −ϕ2

2
; R1 = b2

2 cos δ3
, (22)

ϕ1=cos−1

(
b2

2 +b2
3 −b2

1

2b2b3

)
; ϕ2=cos−1

(
b2

3 +b2
1 −b2

2

2b3b1

)
; ϕ3=cos−1

(
b2

1 +b2
2 −b2

3

2b1b2

)
. (23)

Since eu, ev have already been defined in terms of the Gxyz-system unit vectors by either (6)
or (7), the vectors under consideration are clearly well-known now in the fixed Gxyz-system.

With a similar reasoning in the proximal ring plane, A1A2A3 can be imagined as a triangle
with sides a1=A2A3, a2=A3A1, a3=A1A2; see Figure 2(a). Then, the vectors GA1, GA2, GA3

in the fixed Gxyz-system will identify the co-ordinates of the points A1, A2, A3, respectively.
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GA1 =Ri, (24)

GA2 =−R cos 2β1i +R sin 2β1j, (25)

GA3 =−R cos 2β3i −R sin 2β3j, (26)

where:

β1 = φ1 +φ2 −φ3

2
; β3 = φ3 +φ1 −φ2

2
; R = a2

2 cos β3
, (27)

φ1=cos−1

(
a2

2 +a2
3 −a2

1

2a2a3

)
; φ2=cos−1

(
a2

3 +a2
1 −a2

2

2a3a1

)
; φ3=cos−1

(
a2

1 +a2
2 −a2

3

2a1a2

)
. (28)

When the platform is in its first configuration, Figure 2(a), the bar lengths (L1–L6) can
be evaluated by taking into account distance formulae between the relevant points specified
in the same system:

L2i−1 =|GAi −GBi | ; L2i =
∣∣GAj −GBi

∣∣ , i =1,2,3; j =−2+5·5i −1·5i2 (29)

For the final configuration of the platform, Figure 2(b), the link lengths L1s ,L2s ,L3s ,L4s ,L5s ,
L6s are computed in the same way by the formula (29), except that, GA1, GA2, GA3 being
same, the vectors GB1, GB2, GB3 are replaced by GB1s , GB2s , GB3s as given below:

GB1s = (R1 cos δ0 +qx−rx)i + (R1 sin δ0 +qy−ry)j+ (b+ c)k (30)

GB2s = (−R1 cos(2δ1 − δ0)+qx−rx)i + (R1 sin(2δ1 − δ0)+qy−ry)j+ (b+ c)k (31)

GB3s = (−R1 cos(2δ3 + δ0)+qx−rx)i + (−R1 sin(2δ3 + δ0)+qy−ry)j+ (b+ c)k (32)

2.2. Second case

The second case may result for several reasons. One of these might be that, after imposing
the requirements of the first case and after fracture fixation, radiographs and clinical inves-
tigations might point to a residual deformity at the neutral configuration. In that case, all
the characteristic data pertaining to the parameters described in the first case, as shown in
Figure 1, should be determined again and re-evaluated in such a way that, with proper bar
lengths, the bone is finally brought to its anatomically correct position, as shown in Figure
3(b). Here it is to be understood that proximal parts retain their normal positions, while the
relative positions of the distal parts have taken on an arbitrary appearance, as shown in Fig-
ure 3(a).

In addition to the co-ordinate systems Gxyz and G1uvw defined earlier, (cf . Figure 1(a)),
one more reference frame G′′

1u
′v′w′ with origin at the point of intersection, G′′

1, of distal frag-
ment axis (w′) with the distal ring plane B1B2B3 is needed to formulate the process. Unit vec-
tors of each reference system will be obtained through the transformation matrices both at
the initial and final configurations of the fixator assembly, as shown in Figure 3. Since the
Guvw system is obtained by rotating the Gxyz reference system through an angle δ0 about
the z-axis, the transformation matrix [AG1uvw

Gxyz ]1 and hence the unit vectors [eu e v ew]1 at
the initial configuration “1”, are determined by setting γ = 0, η = 0 and α = δ0 in (7). Fol-
lowing a very similar procedure as in the first case by taking into account the recorded data
as well as Equations (1–9) except that α is set equal to δAx in (8) and (9), we may compute

the rotation matrix [A
G′′

1u′v′w′
Gxyz ]1 which expresses the unit vectors [eu′ ev′ ew′ ]1 of the G′′

1u
′v′w′-

system with respect to the fixed Gxyz-system in configuration “1”. Then, because of the
orthonormal properties of rotation matrices, the transformation of the G1uvw-system relative
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Figure 3. Case 2 of fixator assembly.

to the G′′
1u

′v′w′-system, represented by the matrix [AG1uvw

G′′
1u′v′w′ ]1, is estimated from the following

matrix product:

[AG1uvw

G′′
1u′v′w′ ]1 = [A

G′′
1u′v′w′

Gxyz ]T1 [AG1uvw
Gxyz ]1, (33)

where superscript T denotes the transpose.
In configuration “2” of the fixator assembly, Figure 3(b), similar to (33), the following can

be written for the rotation matrices:

[AG1uvw
Gxyz ]2 = [A

G′′
1u′v′w′

Gxyz ]2 [AG1uvw

G′′
1u′v′w′ ]2. (34)

However, since the axes of the G′′
1u

′v′w′ and those of the fixed Gxyz systems become parallel,
we have

[A
G′′

1u′v′w′
Gxyz ]2 =∗ [eu′ ev′ ew′ ]2 =




1 0 0
0 1 0
0 0 1


 . (35)

It is also clear that, since both the G1uvw and the G′′
1u

′v′w′ systems are attached to the same
distal platform, a relative transformation amongst them remains invariant under any change
of configuration. Thus:

[AG1uvw

G′′
1u′v′w′ ]2 = [AG1uvw

G′′
1u′v′w′ ]1. (36)

From (34), in the light of (35) and (36), it follows:

[AG1uvw
Gxyz ]2 =∗ [eu ev ew]2 = [AG1uvw

G′′
1u′v′w′ ]1. (37)
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Based on the above discussion, first the link lengths (L1–L6) are computed to correspond
to the initial configuration, Figure 3(a), by evaluating GB1, GB2, GB3 as given below under
(38–40) and then substituting them in (29):

GB1 =R1 cos δ0i +R1 sin δ0j+h0k, (38)

GB2 =−R1 cos(2δ1 − δ0)i +R1 sin(2δ1 − δ0)j+h0k, (39)

GB3 =−R1 cos(2δ3 + δ0)i +−R1 sin(2δ3 + δ0)j+h0k, (40)

where h0 is the initial height between the base and the moving platforms along the z-axis and
R1 is the distal ring radius associated with δ1, δ3 in (22) and (23). As for the link lengths
(L1s–L6s) in the final configuration, these are calculated by the following vector relationships,
with reference to Figure 3(b):

GG1 =GG′ +G′G′′
1 −G1G′′

1, (41)

GG′ =qx i +qy j, (42)

G′G′′
1 = (b+ c)k, (43)

G1G′′
1 = (rueu′x + rvev′x)i + (rueu′y + rvev′y)j+ (rueu′z + rvev′z)k. (44)

Here b, c are the proximal and distal fragment lengths, respectively; eu′x , eu′y , eu′z, ev′x , ev′y ,

ev′z, ew′x , ew′y , ew′z are the entries of the matrix [A
G′′

1u′v′w′
Gxyz ]1 and ru,rv are the components

estimated from (rx , ry) radiographic data as follows:

ru = rx cos δ0 + ry sin δ0, (45)

rv =−rx sin δ0 + ry cos δ0. (46)

Completion of evaluations is realized by considering Equations (16–29) with the help of (37).

2.3. Third case

During the attachment phase of the platforms to the fragments at the fracture site, the ortho-
paedist may fail to comply with the assumptions of the previous two cases or the correction
of a residual deformity may be desired. As a result, the fragments may have been attached
to the rings on both the proximal and the distal sides of the fracture in an oblique position,
bringing the inverse kinematic problem into the subject matter of the third case.

In the third case, a new co-ordinate system G′x′y′z′ (c.f. Figure 1(a)) is required at point
G′, where the proximal fragment axis meets with the proximal ring plane, in order to describe
the oblique position of the proximal bone. The system G′x′y′z′ is obtained by rotating the
Gxyz-system about the fixed x, y, z-axes through the angles γ ′, η′ and α′ =0, respectively (i.e.,
first a γ ′-rotation about the x-axis, then a η′-rotation about the y-axis). Thus, the description
of the G′x′y′z′-system with respect to the reference frame Gxyz is to be made as follows:

[AGx′y′z′
Gxyz ]=∗ [ex′ ey′ ez′ ]=




cosη′ sin η′ sin γ ′ sin η′ cosγ ′

0 cosγ ′ − sin γ ′

− sin η′ cosη′ sin γ ′ cosη′ cosγ ′


 . (47)

Now, by referring to the radiographic data collected from the lateral and AP views, (i.e.,
β ′

L, β ′
AP) one can define the orientation of the z′-axis as follows:

ez′ = i cosβz′x + j cosβz′y +k cosβz′z, (48)

where βz′x , βz′y , βz′z are determined according to the following relationships:
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tan β ′
Ax = tan β ′

AP

tan β ′
L

, (49)

tan βz′z = tan β ′
AP

sin β ′
Ax

, (50)

tan βz′y =
√

1+ tan2 βz′z sin2 β ′
Ax

tan βz′z cosβ ′
Ax

, (51)

tan βz′x =
√

1+ tan2 βz′z cos2 β ′
Ax

tan βz′z sin β ′
Ax

. (52)

By comparison of (48) with (47), the following is deduced:

tan η′ = cosβz′x
cosβz′z

, (53)

cosγ ′ = cosβz′z
cosη′ . (54)

Thus the rotation matrix [AG′x′y′z′
Gxyz ] in (47) is now well-defined.

The third case is also characterized by the initial and final configurations of the fixator
assembly, as shown in Figure 4(a), (b). Since the description of the first configuration in
the third case is not affected by the oblique position of the proximal part, the neutral posi-
tion will be handled in the same way as in the second case, as shown in Figure 4(a) and in
Figure 3(a). The distal part being the same in both cases, equations and conditions like (33),
(34), (36), (37) will hold true for the third case too. Different, however, from the second case
is the fact that the axes of the G′x′y′z′ and G′′

1u
′v′w′ systems are to be parallel in the final

configuration of the third case, Figure 4(b), which is expressed by the following:

[A
G′′

1u′v′w′
Gxyz ]2 = [eu′ ev′ ew′ ]2 = [ex′ ey′ ez′ ]. (55)

Thus, in order to get [AG1uvw
Gxyz ]2, specific for the third case, Equation (55) is substituted in (34)

together with (33) and all other calculations are the same as in the second case. After trans-
forming the co-ordinates of the points B1, B2, B3 into the fixed reference-frame co-ordinates
in the initial “1” and final “2” configurations, Equation (29) can be employed to obtain the
leg lengths.

3. Motion of the fixator

Important in all the previous cases were only the two configurations of the fixator assembly,
one at the time of fixation, the other which is the anatomically desirable one. Nevertheless,
how the transition between initial and final configurations will materialize is a problem to be
resolved. Thus, this problem makes it necessary to look at the motion of the fixator.

All the previous cases can be regarded within the context of the inverse kinematic prob-
lem. However, the motion of the fixator is a direct kinematic problem. When the link lengths
in the G-S Platform fixator are assigned new values, the position of the distal fragment fixed
to the moving platform will change relative to the proximal fragment attached to the base. In
this way, the ends of the fragments will move closer to each other, finally ending in the union
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Figure 4. Case 3 of fixator assembly.

position. Here, in this process, the trajectory of the distal fragment end may be of interest
to the orthopaedist to remain within the physically allowable limits from a medical point of
view. Moreover, for reasons of medical-treatment strategies or planning, it may be necessary
to know the amounts of linear and angular displacements of fragments relative to each other.
There is a need to examine the motion of the G-S Platform Mechanism as a fixator.

The analysis of the motion will be carried out in a systematic manner to be useful in med-
ical planning. For this purpose, the following steps will be executed:

(i) Differences in each link length corresponding to the initial and final configurations of
the Stewart Platform, as determined previously, are calculated, i.e.,

∆Lj =Ljs −Lj , j =1 . . .6. (56)

(ii) In accordance with the requirements of a medical-treatment strategy, the number of
steps in which the link lengths are modified is selected as a positive integer (n), with
which length increments or decrements (∆Si) are prescribed:

∆Sj = ∆Lj

n
. (57)

(iii) Each length in the fixator mechanism is adjusted to its new value as follows:

Lji =Lj + i ∆Sj , j =1 . . .6, i =0, . . . , n. (58)

According to the direct kinematic analysis, [6, 7, 11], for a given set of Lji in each step, there
are sixteen different positions of the points B1i , B2i , B3i , i =0, . . . , n, but only one position satis-
fies the initial (Lj =Lj0, i =0) and final (Ljs =Ljn, i =n) values of the link lengths as determined
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in the previous three cases. After deciding on the correct positions of the points (B1i , B2i , B3i) in
each step, which characterize the motion of the moving platform, a decoupling process is started
to decompose the resultant motion into the translation along the three axes of the Gxyz-fixed
reference frame and rotation about the fixed x, y, z-axes. With a knowledge of B1i , B2i , B3i

co-ordinates, Equations (16–18) are solved with the help of (19–23), to get eu, ev and ew as the
cross-product of the unit vectors eu, ev, of the G1uvw-system, which then leads to the co-ordi-
nates of G1, namely g1xi, g1yi, g1zi , as follows: (See Appendix C).

g1xi = 1
4 cos δ3 cos δ1 sin(δ3 + δ1)

[B1xi sin(2δ3 +2δ1)+B2xi sin 2δ3 +B3xi sin 2δ1] , (59)

g1yi = 1
4 cos δ3 cos δ1 sin(δ3 + δ1)

[
B1yi sin(2δ3 +2δ1)+B2yi sin 2δ3 +B3yi sin 2δ1

]
, (60)

g1zi = 1
4 cos δ3 cos δ1 sin(δ3 + δ1)

[B1zi sin(2δ3 +2δ1)+B2zi sin 2δ3 +B3zi sin 2δ1] , (61)

eui = (B1xi −g1xi)

R1
i + (B1yi −g1yi)

R1
j+ (B1zi −g1zi)

R1
k, (62)

evi = 1
sin(2δ3 +2δ1)R1




[(B2xi −g1xi) cos 2δ3 − (B3xi −g1xi) sin 2δ1] i +[
(B2yi −g1yi) cos 2δ3 − (B3yi −g1yi) sin 2δ1

]
j +

[(B2zi −g1zi) cos 2δ3 − (B3zi −g1zi) sin 2δ1] k +


 , (63)

ewi = (euyievzi − euzievyi)i + (euzievxi − euxievzi)j+ (euxievyi − euyievxi)k, (64)

where (B1xi,B1yi,B1zi), (B2xi,B2yi,B2zi), (B3xi,B3yi,B3zi) are the coordinates of B1,B2,B3,
respectively, in the Gxyz-system at step i. By means of (62–64), the rotation matrix [AG1uvw

G′′
1xyz

]i
at i-th step is constructed:

[AG1uvw
Gxyz ]i = [eui evi ewi ]=




eux evx ewx

euy evy ewy

euz evz ewz


 . (65)

Thus, the rotation angles (γ , η, α) about the x, y, z-axes are extracted in that order from the
matrix above as follows [14, Chapter 2]:

γi = tan−1(evzi/ewzi), (66)

ηi = tan−1
(
−euzi/

√
e2
uxi + e2

uyi

)
, (67)

αi = tan−1(euyi/euxi). (68)

With (59–61) and (66–68), the three translations (g1xi, g1yi, g1zi) and the three orderly rota-
tions (γi , ηi , αi) are now well-defined.

In order to describe the trajectory to be traced by the distal fragment end G′
1 during the

treatment process in the fixed Gxyz-system, the following vector equation is written down for
each step i:

GG′
1i =GG1i +G1iG′′

1i −G′
1iG

′′
1i . (69)

For the first case, Figure 2, vectors of interest are computed as follows:



Mathematical model for deployment of G-S platform mechanism 131

G1iG′′
1i = rueui + rvevi , (70)

GG1i =g1xi i +g1yi j+g1zik, (71)

G′
1iG

′′
1i = cewi, (72)

where ru, rv are the same as in (45) and (46).
For the second and third cases, however, Equations (70) and (71) remaining the same, the

vector G′
1i

G′′
1i

is determined in the following way:

G′
1iG

′′
1i = cew′i , (73)

where ew′ is the last column of the transformation matrix [A
G′′

1u′v′w′
Gxyz ]i is expressed as follows:

[A
G′′

1u′v′w′
Gxyz ]i = [AG1uvw

Gxyz ]i [AG1uvw

G′′
1u′v′w′ ]

T . (74)

In (74), [AG1uvw

G′′
1u′v′w′ ] is the same as defined in (33).

A rearrangement of (11) for the fracture opening (KG′
1) may also be used in order to get

an idea of how the ends of the fragments are positioned with respect to each other, at each
intermediate step i of the treatment-planning process.

4. Numerical examples and discussion

Here, the three cases analyzed earlier will be illustrated in order to verify numerically the the-
ory presented. Trajectories for each case will be obtained for three different examples. Com-
mon data for all the three examples come from only the upper A1A2A3 (a1 =10, a2 =10, a3 =
10), and lower B1B2B3 (b1 =10, b2 =10, b3 =10) triangles. Wherever needed, direct kinematic
analysis results have been taken from [6].

4.1. Example 1

In addition to the physical dimensions of the fixator, lateral, AP radiographic data, as well
as the clinical investigation results are given. Required are the link lengths in the initial and
final configurations of case 1, Section 2.1, motion results and fracture opening.

The Lateral data are specified as follows:

ey =−1·70 cm; ez =0·21 cm; cL =7·58 cm; b=12 cm; βL =12·48◦.
The AP data: ex =−2·59 cm; βAP =19·01◦.
The Axial data: qx =0·50 cm; qy =0·60 cm; rx =0·70 cm; ry =0·80 cm; δ0 =60◦; δAx =−3·87◦.

First, for the data given above inverse kinematics involving the calculation procedure pre-
sented in Section 2.1 corresponding to case 1 is applied and leads to the following results:

c=8·00 cm; L1 =18·86; L2 =18·82; L3 =22·50; L4 =22·58; L5 =20·89; L6 =21·09.
L1s =20·80; L2s =20·76; L3s =20·89; L4s =20·80; L5s =20·76; L6s =20·89.

Secondly, the direct kinematics is carried out with the resulting lengths in the initial
(L1–L6) and in the final (L1s–L6s) configurations of the G-S platform, leading to the coor-
dinates of the distal ring joints B1, B2, B3 as displayed in Table 1. It is clearly observed in
Table 1 that if the orthopaedist uses the leg lengths estimated at the end of the inverse kine-
matics procedure (i.e., Section 2.1), he (or she) is supposed to get the intended final neutral
configuration, whereby the distal ring plane is parallel to the proximal one.
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A ten-step treatment strategy is considered here to move from the initial configuration to
the final one. The leg lengths are computed at each step in accordance with Equations (56–58)
and are collected in Table 2. The significance of the values in Table 2 is that it produces for
the orthopaedist the necessary values of the leg lengths to be applied to the G-S platform
fixator at each step of the treatment strategy.

For the calculated leg lengths at each step, direct kinematics together with the theory
presented in Section 3 is implemented yielding the B1, B2, B3 co-ordinates and the fracture
opening (KG′

1) as shown in Table 3. While there is a totally (linear and angular) misaligned
position of the bone fragments at the initial configuration (i.e., step 0), all the misalignments
have been removed in the final configuration (i.e., step 10).

4.2. Example 2

The dimensions of the fixator, the lateral and AP views, as well as the clinical data, are input
to the second case; see Figure 3. The output are the link lengths and motion results.

The specified lateral data are as follows: ey =1·03 cm; ez =1·00 cm; cL =7.05 cm; b=12 cm;
βL =−6·750.
The AP data: ex =−3·58 cm; βAP =28·34◦.
The Axial data: qx =0·50 cm; qy =0·60 cm; rx =0·70 cm; ry =0·80 cm; δ0 =60◦; δAx =20·00◦.

Table 1. Co-ordinates of points B1, B2, B3 in Example 1.

Co-ordinates

Position Points x-Component y-Component z-Component

Initial B1 2·51 4·50 18·03
B2 −5·67 0·17 21·80
B3 2·56 −5·27 20·17

Final B1 2·69 4·80 20·00
B2 −5·97 −0·20 20·00
B3 2·69 −5·20 20·00

Table 2. Variations of link lengths in Example 1.

Step number Link lengths

i L1 L2 L3 L4 L5 L6

0 18·86 18·82 22·50 22·58 20·90 21·09
1 19·06 19·02 22·34 22·40 20·88 21·07
2 19·25 19·21 22·18 22·22 20·87 21·05
3 19·44 19·41 22·02 22·05 20·86 21·03
4 19·64 19·60 21·86 21·87 20·84 21·01
5 19·83 19·79 21·70 21·69 20·83 20·99
6 20·02 20·00 21·54 21·51 20·82 20·97
7 20·22 20·18 21·38 21·33 20·80 20·95
8 20·41 20·38 21·22 21·15 20·79 20·93
9 20·60 20·57 21·06 20·98 20·78 20·91

10 20·80 20·76 20·89 20·80 20·76 20·89
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Table 3. Variations of B co-ordinates and fracture opening in Example 1.

Step number Co-ordinates

i Points x-Component y-Component z-Component

0 B1 2·51 4·50 18·03
B2 −5·67 0·17 21·80
B3 2·56 −5·27 20·17
KG′

1 −2·59 −1·70 0·21

1 B1 2·55 4·57 18·22
B2 −5·74 0·13 21·62
B3 2·56 −5·25 20·16
KG′

1 −2·33 −1·53 0·13

2 B1 2·58 4·62 18·41
B2 −5·80 0·09 21·44
B3 2·57 −5·23 20·14
KG′

1 −2·06 −1·35 0·06

3 B1 2·61 4·67 18·61
B2 −5·85 0·05 21·25
B3 2·58 −5·21 20·13
KG′

1 −1·80 −1·18 0·01

4 B1 2·64 4·72 18·80
B2 −5·89 0·02 21·07
B3 2·59 −5·20 20·11
KG′

1 −1·54 −1·00 −0·03

5 B1 2·66 4·75 19·00
B2 −5·93 −0·02 20·89
B3 2·60 −5·19 20·09
KG′

1 −1·28 −0·83 −0·06

6 B1 2·67 4·78 19·20
B2 −5·95 −0·06 20·71
B3 2·61 −5·19 20·08
KG′

1 −1·02 −0·66 −0·07

7 B1 2·68 4·79 19·40
B2 −5·97 −0·10 20·53
B3 2·63 −5·18 20·06
KG′

1 −0·77 −0·49 −0·07

8 B1 2·69 4·80 19·60
B2 −5·98 −0·13 20·35
B3 2·65 −5·19 20·04
KG′

1 −0·51 −0·33 −0·06

9 B1 2·69 4·81 19·80
B2 −5·98 −0·17 20·18
B3 2·67 −5·19 20·02
KG′

1 −0·25 −0·16 −0·04

10 B1 2·69 4·80 20·00
B2 −5·97 −0·20 20·00
B3 2·69 −5·20 20·00
KG′

1 0·00 0·00 0·00
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Table 4. Co-ordinates of points B1, B2, B3 in Example 2.

Co-ordinates

Position Points x-Component y-Component z-Component

Initial B1 2·89 5·00 20·00
B2 −5·77 0·00 20·00
B3 2·89 −5·00 20·00

Final B1 3·66 4·07 20·60
B2 −5·26 1·32 17·03
B3 0·56 −5·38 21·63

After implementation of the theory of Section 2.2, the inverse kinematic results turn out
to be the following:

c=8·00 cm; L1 =20·82; L2 =20·82; L3 =20·82; L4 =20·82; L5 =20·82; L6 =20·82.

L1s =21·10; L2s =21·63; L3s =17·58; L4s =18·32; L5s =21·91; L6s =22·89.

Based on the parameters determined above, a direct kinematic analysis is performed pro-
ducing the distal ring joint (B1, B2, B3) co-ordinates in Table 4. As can be seen from the
figures in Table 4, the initial configuration of the distal ring of the G-S platform fixator is
parallel to the proximal one, whereas in the final configuration the distal ring has an oblique
position. The numerical results validate the theory of Section 2.2. It means that all the trans-
lational and angular deformities present in the initial neutral configuration have been cor-
rected in the final oblique configuration.

If a 10-step treatment strategy is followed by the orthopaedist, then he (or she) should take
for the required leg lengths of the G-S platform fixator in each step the values displayed in
Table 5.

The direct kinematic analysis results based on the leg lengths of Table 5 are collected in
Table 6 for each step. The figures in Table 6 prove that the distal and the proximal bone frag-
ments are orthopaedically reduced after the implementation of the ten-step treatment strategy.

4.3. Example 3

The physical dimensions, the Lateral, AP radiographic data and the clinical examination
results are the basic input, while the B-point co-ordinates, as well as the fracture opening are
the required output corresponding to the third case.

The Lateral data: ey =3·11 cm; ez =1·58 cm; bL =11·61; cL =7·05 cm; βL =−6·75◦;
β ′

L =−10·35◦.
The AP data: ex =−6·64 cm; βAP =28·34◦; β ′

AP =15·00◦.
The Axial data: qx =0·50 cm; qy =0·60 cm; rx =0·70 cm; ry =0·80 cm; δ0 =60◦; δAx =20·00◦.

For the given data taken from the radiographic and the clinical examinations, an inverse
kinematic analysis is carried out according to the theory of Section 2.3 and the following
results are found:

c=8·00 cm; b=12·00 cm; L1 =20·82; L2 =20·82; L3 =20·82; L4 =20·82; L5 =20·82;
L6 =20·82;

L1s =19·62; L2s =23·15; L3s =19·14; L4s =18·25; L5s =21·78; L6s =21·55·
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Table 5. Variations of Link Lengths in Example 2.

Step Link lengths
number

i L1 L2 L3 L4 L5 L6

0 20·82 20·82 20·82 20·82 20·82 20·82
1 20·85 20·90 20·49 20·57 20·93 21·02
2 20·87 20·98 20·17 20·32 21·04 21·23
3 20·90 21·06 19·85 20·07 21·14 21·44
4 20·93 21·14 19·52 19·82 21·25 21·65
5 20·96 21·23 19·20 19·57 21·36 21·86
6 20·99 21·31 18·88 19·32 21·47 22·06
7 21·02 21·39 18·55 19·07 21·58 22·27
8 21·05 21·47 18·23 18·82 21·69 22·48
9 21·07 21·55 17·91 18·57 21·80 22·69

10 21·10 21·63 17·58 18·32 21·91 22·89

When the initial and the final leg lengths of the G-S platform fixator are entered into a
direct kinematic analysis, it produces the distal ring joint B1, B2, B3 co-ordinates in Table 7.

For a ten-step treatment strategy the calculated leg lengths needed by the orthopaedist to
set up the G-S platform fixator at each step are shown in Table 8.

Next, the theory of Section 3 together with the direct kinematic analysis provides the dis-
tal ring joint co-ordinates at each step of the treatment strategy displayed in Table 9. It is
seen that the bone deformities are totally corrected.

The examples show that by a ten-step treatment strategy, the fracture opening is gradually
decreased in magnitude to arrive finally at a zero value, the union configuration. The amounts
by which this final target is achieved may be changed if the medical constraints should require
this to be so. This is accomplished by simply altering the number of steps. For instance, if the
advance size in each step exceeds the medically allowable limit, then the number of intermedi-
ate fixation positions can be increased without difficulty. Conditions of the fracture may also
impose new constraints on the practicing orthopaedist to vary or plan different trajectories
along which the distal fragment end at the fracture site is more conveniently moved. In that
case, it may not be sufficient to modify the number of steps only, but the lengths of each link
in the fixator may have to be varied unequally according to different experimental or simula-
tion schemes. In this way, the orientation, as well as the magnitude of the linear displacement
vector associated with the distal fragment end, will be affected, thus producing many alterna-
tive paths out of which the most suitable one can be chosen.

By varying the input data to the theories presented, one may perform numerical experi-
ments to decide on a feasible and most appropriate treatment strategy. However, care should
be exercised with the sign convention of the input data. Needless to say that linear quantities
are regarded positive when they are measured along the positive directions of any co-ordinate
system. It is also tacitly assumed that for the sign of the angular quantities, when viewed
against the thumb or axis direction, the right-hand rule determines the positive sense, i.e.,
counter-clockwise being (+).
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Table 6. Variations of B co-ordinates and fracture opening in Example 2.

Step number Co-ordinates

i Points x-Component y-Component z-Component

0 B1 2·89 5·00 20·00
B2 −5·77 0·00 20·00
B3 2·89 −5·00 20·00
KG′

1 −3·58 1·03 0·10

1 B1 2·97 4·92 20·06
B2 −5·82 0·15 19·69
B3 2·69 −5·08 20·17
KG′

1 −3·24 1·02 0·81

2 B1 3·05 4·83 20·12
B2 −5·84 0·30 19·39
B3 2·50 −5·15 20·33
KG′

1 −2·90 0·10 0·65

3 B1 3·12 4·74 20·18
B2 −5·84 0·44 19·09
B3 2·29 −5·22 20·50
KG′

1 −2·55 0·95 0·50

4 B1 3·20 4·65 20·25
B2 −5·81 0·58 18·79
B3 2·07 −5·28 20·67
KG′

1 −2·19 0·88 0·37

5 B1 3·28 4·56 20·31
B2 −5·77 0·71 18·49
B3 1·85 −5·33 20·83
KG′

1 −1·83 0·79 0·26

6 B1 3·36 4·46 20·37
B2 −5·71 0·84 18·19
B3 1·62 −5·37 20·99
KG′

1 −1·46 0·67 0·17

7 B1 3·43 4·37 20·42
B2 −5·63 0·97 17·90
B3 1·37 −5·39 21·15
KG′

1 −1·10 0·54 0·10

8 B1 3·51 4·27 20·48
B2 −5·52 1·09 17·61
B3 1·12 −5·41 21·32
KG′

1 −0·73 0·38 0·05

9 B1 3·59 4·17 20·54
B2 −5·40 1·20 17·32
B3 0·85 −5·40 21·48
KG′

1 −0·25 −0·16 −0·04

10 B1 3·66 4·07 20·60
B2 −5·26 1·32 17·03
B3 0·56 −5·38 21·63
KG′

1 0·00 0·00 0·00
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Table 7. Co-ordinates of points B1, B2, B3 in Example 3.

Co-ordinates

Position Points x-Component y-Component z-Component

B1 2·89 5·00 20·00
Initial B2 −5·77 0·00 20·00

B3 2·89 −5·00 20·00

B1 8·96 0·44 19·36
Final B2 −0·69 −1·65 17·81

B3 5·81 −9·04 19·56

Table 8. Variations of link lengths in Example 3.

Step Link lengths
number

i L1 L2 L3 L4 L5 L6

0 20·82 20·82 20·82 20·82 20·82 20·82
1 20·70 21·05 20·65 20·56 20·91 20·89
2 20·58 21·28 20·48 20·30 21·01 20·96
3 20·46 21·52 20·31 20·05 21·11 21·04
4 20·34 21·75 20·14 19·79 21·20 21·11
5 20·22 21·98 19·98 19·53 21·30 21·18
6 20·10 22·22 19·81 19·28 21·40 21·26
7 19·98 22·45 19·64 19·02 21·49 21·33
8 19·86 22·68 19·47 18·77 21·59 21·40
9 19·74 22·92 19·30 18·51 21·69 21·48

10 19·62 23·15 19·14 18·25 21·78 21·55

5. Conclusions

In this work theories have been presented as to how a 3-3 type G-S Platform Mechanism
can be utilized to form medically amenable treatment strategies under miscellaneous cases
of extremity fractures and deformity-correction processes. The different theories are based on
the coupling of the medical input data, such as those obtained from radiographic and clini-
cal measurements with the inverse and forward kinematics of the fixator assembly. They have
been tested on numerical examples to provide verification. Results have demonstrated that,
by varying the input, miscellaneous alternatives can be developed to fit to the orthopaedists’
needs for an effective treatment strategy.

This work has been basically founded on three related scenarios. In the first scenario, the
proximal and distal bone fragments are attached perpendicular to the base and moving planes
of the G-S platform mechanism, respectively, to form a 6 degree-of-freedom spatial external
fixator. Depending on the radiographic and clinical data, the lengths of the bars joining the
proximal ring to the distal ring are calculated by performing an inverse kinematic analysis,
both at the initial and final configuration of the G-S platform. If the entered data represent
accurate measurements, then the misaligned bone fragments are brought to their anatomically
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Table 9. Variations of B co-ordinates and fracture opening in Example 3.

Step number Co-ordinates

i Points x-Component y-Component z-Component

0 B1 2·89 5·00 20·00
B2 −5·77 0·00 20·00
B3 2·89 −5·00 20·00
KG′

1 −6·64 3·11 1·58

1 B1 3·48 4·56 20·06
B2 −5·32 −0·18 19·84
B3 3·19 −5·43 20·01
KG′

1 −5·97 2·88 1·49

2 B1 4·08 4·12 20·09
B2 −4·85 −0·36 19·67
B3 3·50 −5·86 20·00
KG′

1 −5·31 2·64 1·39

3 B1 4·68 3·67 20·10
B2 −4·37 −0·53 19·49
B3 3·80 −6·29 19·98
KG′

1 −4·65 2·37 1·27

4 B1 5·29 3·22 20·08
B2 −3·87 −0·71 19·29
B3 4·10 −6·70 19·95
KG′

1 −3·98 2·09 1·14

5 B1 5·89 2·77 20·03
B2 −3·37 −0·87 19·09
B3 4·40 −7·12 19·90
KG′

1 −3·32 1·80 1·00

6 B1 6·50 2·31 19·95
B2 −2·86 −1·04 18·87
B3 4·69 −7·52 19·85
KG′

1 −2·65 1·48 0·84

7 B1 7·11 1·85 19·85
B2 −2·33 −1·19 18·63
B3 4·98 −7·92 18·79
KG′

1 −1·99 1·14 0·66

8 B1 7·73 1·38 19·72
B2 −1·80 −1·35 18·37
B3 5·26 −8·31 19·72
KG′

1 −1·32 0·79 0·46

9 B1 8·34 0·92 19·55
B2 −1·25 −1·50 18·10
B3 5·54 −8·68 19·64
KG′

1 −0·66 0·41 0·24

10 B1 8·96 0·44 19·36
B2 −0·69 −1·65 17·81
B3 5·81 −9·04 19·56
KG′

1 0·00 0·00 0·00
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correct positions in the final configuration of the fixator, whereby the proximal and distal
rings are parallel to each other

For many reasons like the entry of inaccurate data, violation of assumptions, geometric
irregularities in the bones or residual deformities, the bone fragments may turn out to be
unreduced at the end of the treatment process, i.e., when the neutral configuration is reached
in the first scenario. In that case, a second treatment phase is to be initiated from the neutral
configuration to ultimately end up with a union configuration at the fracture site. In another
situation, fracture conditions may require the fixing of the distal bone fragment to the mov-
ing plane of the G-S platform at an oblique position when the base and moving platforms
are initially parallel. This constitutes the second scenario, in which a new inverse kinematic
analysis is carried out to calculate the leg lengths of the fixator corresponding to a new set
of radiographic and clinical measurements in both the initial and final configurations.

The third scenario arises when, after the application of the first scenario, the radiographic
and clinical examinations point to a wrong fixation of the bones to their respective rings.
It may also be generated out of a situation whereby the fractured bone conditions dictate
that both the distal and proximal bone fragments be fixed to the moving and base planes
of the G-S platform mechanism, respectively, at different oblique positions. In those cases,
new leg lengths have to be calculated that correspond to the correct radiographic and clin-
ical data. When the translational and rotational misalignments have been removed from the
broken parts of the extremity, the moving platform takes on an oblique position relative to
the base.

It is of the utmost importance for the orthopaedic surgeon to know the proper values of
the bar lengths of the G-S platform mechanism in order to set up the spatial fixator as envis-
aged. On the other hand, he (or she) may wish to see how closer the two ends of the bone
fragments are moved with respect to each other during the course of healing for a desirable
union configuration. To that end, a direct analysis has been performed in the work leading
to the generated trajectory of the distal bone end as viewed from the base. There might be
a number of possibilities for the orthopaedist to change the trajectory by picking up several
feasible leg lengths between their initial and final values.

Thanks to the existence of closed loops within its kinematic structure, the G-S platform
mechanism provides a limited but adequate workspace, as well as a stiff parallel robotic struc-
ture for the orthopaedic applications as a suitable spatial external fixator. Bar lengths, being
fundamental kinematic parameters, will affect both the workspace and the stiffness of the fix-
ator significantly. If more stiffness is required on the part of bone fragments at the union
configuration, this is to be secured possibly by shorter bar lengths. Thus, from such a point
of view, the first scenario appears to be the most preferable one to be implemented by the
orthopaedic surgeon, when there is room for such a choice. Whether the optimum stiffness
demanded by the treatment process matches with the neutral configuration is a hypothesis to
be substantiated by further research.

In case the surgeon could describe the trajectory along which the distal bone end could be
moved most conveniently to bring it in complete alignment with the proximal bone end, then
it should be possible to set up a procedure for the evaluation of necessary bar lengths for
that purpose. In this work, bones are only represented by their mid-points. However, if they
are badly deformed to the extent that they can no longer be represented as cylinders, then
points outside their axes might have to be taken into consideration as well. In such cases, the
work can be extended to cover these points.
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Appendix A: Derivation of Equation (1–4):

A rectangular prism with the sides Cx , Cy , Cz along the axes x, y, z of an orthogonal refer-
ence system is shown in Figure 5. The axis (w) of a rod having length c coincides with the
diagonal of the prisms as seen in Figure 5. If the angles measured between the projections of
the rod onto the zx, zy and yx-planes and the corresponding z, z, y-axes are denoted by βAP ,
βL, βAx , respectively, as shown in Figure 5, then the following relationships can be written:

Cx =CL cosβL tan βAP ; Cy =CL sin βL; Cz =CL cosβL, (A-1)

where CL is the length of the projected rod in the yz-plane. Now, in the light of the relation-
ships (A-1), Equations (1–4) can be obtained by successive substitutions among the following
relationships written from Figure 5:

tan βAx = Cx

Cy

; tan βwz = Cx

Cz sin βAx

, (A-2)

tan βwy =
√

C2
z +C2

x

Cy

; tan βwx =
√

C2
y +C2

z

Cx

, (A-3)

where βwx , βwy , βwz are direction cosine angles of the axis w in the Oxyz-reference system.

Appendix B: Derivation of Equations (22–23):

The distal triangle B1B2B3 is drawn in Figure 6. Given the sides b1, b2, b3 of the triangle, the
angles ϕ1, ϕ2, ϕ3 can be determined by the application of the cosine law, leading to the equa-
tion set (23). Since points B1, B2, B3 are on a circle with center at G1 and with radius R1,
it follows that the triangles B1G1B2, B2G1B3, B3G1B1 are isosceles triangles. Hence, the fol-
lowing equations are written from Figure 6:

δ3 + δ1 =ϕ1, δ1 + δ2 =ϕ2, δ2 + δ3 =ϕ3. (B-1)

The solution of (B-1) for δ1, δ3 yields (22).

Figure 5. Projections of a rod with w axis in the
Oxyz-system.

Figure 6. The distal triangle.
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Appendix C: Derivation of Equations (59–64):

The following solution procedure is applied to arrive at Equations (59–64). First, subtract (16)
from (17) and from (18) side by side to yield the following:

GBk −GB1 =G1Bk −G1B1, k =2,3. (C-1)

Then substitute G1Bk k = 2,3 from Equations (19–21) in (C-1) to get two vector equations
with two vector unknowns eu, ev. Note that, since by direct kinematics the point Bi i =1,2,3
co-ordinates (Bix,Biy,Biz) have been determined in the fixed Gxyz co-ordinate system for a
given set of leg lengths, the unit vectors eu, ev are solved from the linear equation (C-1) in
terms of the unit vectors i, j, k defined in the fixed Gxyz-system. Now that eu,ev have been
expressed in the i, j, k unit vectors, the co-ordinates (g1x , g1y , g1z) of the point G1 are now
obtained from one of the Equations (16–18). After lengthy algebraic manipulations accom-
panied by trigonometric identities, the formulas (58–63) are obtained. Equation (64) follows
from ew =euxev, (i.e., ew is the cross-product of the vectors eu, ev) based on the orthogonality
of axes according to the right-hand rule.

Appendix D: List of symbols

A1, A2, A3 Spherical joint points on base platform.
a1, a2, a3 Side lengths of the proximal triangle.
[AG1uvw

Gxyz ] Rotation matrix of the moving co-ordinate system relative to the
fixed co-ordinate system.

[AG1uvw
Gxyz ]1 Rotation matrix at the initial configuration.

[AG1uvw
Gxyz ]2 Rotation matrix at the final configuration.

[AG1uvw

G′′
1u′v′w′ ]1 Relative rotation matrix at the initial configuration.

[AGx′y′z′
Gxyz ] Relative rotation matrix associated with the proximal fragment.

AP Antero-posterior
B1, B2, B3 Spherical joint points on moving platform.
b, c The fragment lengths on the proximal and distal sides, respectively.
b1, b2, b3 Side lengths of the distal triangle.
bL, cL The projected lengths of the proximal and distal fragments on the lateral plane.
Cx , Cy , Cz Sides of a rectangular prism along x,y,z-axes of an orthogonal reference system.
eu, ev, ew The unit vectors of the moving co-ordinate system.
eux , euy , euz Components of the eu unit vector along the fixed x,y,z-axes.
evx , evy , evz Components of the ev unit vector along the fixed x,y,z-axes.
ewx , ewy , ewz Components of the ew unit vector along the fixed x,y,z-axes.
[eu′ev′ew′ ] Unit vectors of the moving reference system attached to the distal bone

center.
eu′x , eu′y , eu′z The eu′ unit vector components of the moving reference system attached

to the distal bone center.
ev′x , ev′y , ev′z The ev′ unit vector components of the moving reference system attached

to the distal bone centre.
ew′x , ew′y , ew′z The ew′ unit vector components of the moving reference system attached to

the distal bone centre.
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ex , ey , ez Relative translations of the fragment bone ends along x,y,z-axes, respec-
tively.

ex′ ey′ ez′ Unit vectors of the reference system fixed to the proximal bone center.
G Proximal ring center.
G′ Proximal bone center.
G1 Distal ring center.
G′

1 Distal bone end.
G′′

1 Distal bone center.
GA1, GA2, GA3 Position vectors of spherical joint points on base platform relative to

fixed co-ordinate system.
G1B1, G1B2 G1B3 Position vectors of spherical joint points on moving platform relative to

moving co-ordinate system.
GB1, GB2, GB3 Position vectors of spherical joint points on moving platform relative

to fixed co-ordinate system.
GB1s , GB2s , GB3s Position vectors of spherical joint points on moving platform relative to

fixed co-ordinate system for the final configuration.
GG1 Position vectors of the distal ring center.
G1G′′

1 Position vector of intersection of the distal bone axis and distal ring
plane relative to the distal ring center.

G′
1G′′

1 Position vector of intersection of the distal bone axis and distal ring
plane relative to the distal bone end.

GK Position vector of the proximal bone end.
G1uvw Moving co-ordinate system fixed to the distal ring center.
G′′

1u
′v′w′ Moving co-ordinate system fixed to the distal bone center.

Gxyz Co-ordinate system fixed to the proximal ring center.
G′x′y′z′ Co-ordinate system fixed to the proximal bone center.
g1x, g1y, g1z The co-ordinates of the distal ring center in the fixed system.
h Distance between the proximal and distal ring planes along

z-direction at neutral position.
h0 The initial height between the base and moving platforms along the

z-axis.
i, j, k Unit vectors of the fixed system.
i, j, k Indices.
K Proximal bone end.
KG′

1 Position vector of the distal bone end relative to the proximal bone end.
L Lateral
(L1-L6) Leg lengths of the G-S Platform Mechanism.
L1s ,L2s ,L3s , Leg lengths of the G-S Platform Mechanism for the final configuration.
L4s ,L5s ,L6s

n Number of steps in a treatment strategy.
qx , qy The distances between the centers of the proximal ring and the proximal

fragment along x,y directions in the proximal ring plane, respectively.
R Proximal ring radius.
R1 Distal ring radius.
rot [γ, η,α] Rotation matrix involving γ, η,α rotations about x, y, z-axes, respec-

tively.
ru, rv, The distances between the centers of the distal ring and distal fragment

along the directions in the moving ring plane, respectively.
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rx , ry , rz The distances between the centers of the distal ring and distal fragment along
x,y,z directions, respectively, in the fixed Gxyz-system.

β1, β2, β3 Angles of the proximal isosceles triangles.
βAx The projected angle of the w-axis in the axial direction.
βL, βAP The angles measured between the vertical z-axis and projected axes of the

distal fragment on the lateral (L) and on the AP planes, respectively.
βwx , βwy , βwz The angles between the w-axis of the moving and the fixed axes of the base

co-ordinate systems, respectively.
βz′x , βz′y , βz′z Direction cosine angles of the z′-axis.
β ′

Ax The projected angle of the z′-axis in the axial direction.
β ′

L, β ′
AP The angles measured between the vertical z-axis and the projected axis of the

proximal fragment on the lateral (L) and on the AP planes, respectively.
δ0 The relative rotation of the distal ring with respect to the proximal ring.
δ1, δ2, δ3 Angles of the distal isosceles triangles.
δAx The projected relative angular displacement of the distal fragment with

respect to the proxiaml fragment in the axial view.
φ1, φ2, φ3 Angles of the proximal triangle.
ϕ1, ϕ2, ϕ3 Angles of the distal triangle.
γ , η, α Angles of rotation about x, y and z-axes, respectively.
γ ′, η′, α′ Angles of rotation about x′, y′ and z′-axes, respectively.
	L Leg length difference between the initial and final configurations of the GS
	S Link length increment or decrement.
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